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Abstract
It is shown that the actual paths in Hilbert space followed by a finite set of n � 2
quantum states evolving between initial and final end point configurations are
such that an associated weak energy functional defined by Pancharatnam phases
and state separation distances in projective Hilbert space determined by the
generalized Fubini-Study metric is stationary for all variations of these phases,
separations and time which vanish at the end points. Noether’s theorem is
used to identify two weak energy conservation laws which are shown to be
the analogues of the momentum and energy conservation laws of Langrangian
mechanics.

PACS numbers: 03.65.Ca, 03.65.Ta, 03.65.Vf, 45.10.Db, 45.20.Jj

1. Introduction

Variational principles are well known in classical mechanics for their unifying qualities
and philosophical appeal. For example, rather than independently addressing the state of
a mechanical system at each instant of time during its motion, Hamilton’s principle treats the
motion as a whole in a single statement which asserts that if the initial and final configurations
of a system are prescribed, then the system’s motion occurs in a manner such that the associated
definite time integral of the Lagrangian function is stationary for arbitrary variations of the
system’s configuration. This principle contains the mechanics of holonomic systems with
forces derivable from potentials and—when combined with Noether’s theorem—provides
powerful conservation laws. Quantum mechanical variational principles have also been
developed by Feynman and Hibbs [1] and Schwinger [2].

The notion of the ‘weak value’ of a quantum mechanical observable was introduced by
Aharonov et al [3–5] over a decade ago. This value is the statistical result of a standard
measurement procedure upon a pre-selected and post-selected ensemble of quantum systems
when the interaction between the measuring apparatus and the system is sufficiently weak.
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Since then, weak values have been discussed in a variety of contexts including quantum
stochastic processes [6], quantum non-locality [7], conditional probabilities and the tunnelling
time controversy [8, 9], physical elements of reality [10], quantum random walks [11], arrival
time probability distributions [12], quantum communication protocols [13, 14], counterfactual
reasoning [15] and quantum trajectory theory [16].

Recently an intrinsic weak energy has been observed experimentally [17] and studied
from a theoretical perspective [18]. The purpose of this paper is to extend this theory by
showing that the actual paths in Hilbert space followed by a finite set of n � 2 quantum states
evolving between initial and final end point configurations are such that an associated weak
energy functional defined by Pancharatnam phases and state separations in projective Hilbert
space determined by the generalized Fubini-Study metric is stationary for all variations of
these phases, separations and time which vanish at the end points. In addition, Noether’s
theorem is used to identify two weak energy conservation laws and they are shown to be
analogues of the momentum and energy conservation laws of Lagrangian mechanics.

2. Weak energy

Consider a pair |ψj (t)〉 and |ψk(t)〉 of normalized quantum states evolving in a Hilbert space
H. Let P be the associated projective space consisting of all the rays of H (recall that a ray is
an equivalence class [ψ] of states |ψ〉 in H which differ only in phase) with � : H → P the
induced projection map such that |ψ〉 �−→ [ψ]. The weak energy Wj,k(t) associated with this
pair of states is the complex-valued quantity defined by [17, 18]

Wj,k(t) ≡ 〈ψj (t)|Ĥ j − Ĥ k|ψk(t)〉
〈ψj (t)|ψk(t)〉 = Re Wj,k(t) + i Im Wj,k(t) (1)

where 〈ψj (t)|ψk(t)〉 �= 0 with

i h̄
d|ψk(t)〉

dt
= Ĥ k|ψk(t)〉 and i h̄

d〈ψj (t)|
dt

= −〈ψj (t)|Ĥ j .

It is shown in [18] that

Re Wj,k(t) = h̄

(
dχj,k(t)

dt

)
≡ h̄χ̇j,k(t)

and

Im Wj,k(t) = h̄

{
sj,k(t)

4 − s2
j,k(t)

}(
dsj,k(t)

dt

)
≡ h̄

{
sj,k(t)

4 − s2
j,k(t)

}
ṡj,k(t).

Here, χj,k(t) is the Pancharatnam phase [19] at time t defined by

eiχj,k(t) = 〈ψj (t)|ψk(t)〉
|〈ψj (t)|ψk(t)〉| (2)

and is the phase difference between |ψk(t)〉 and |ϕ(t)〉, where |ϕ(t)〉 is the state contained in
the equivalence class [ψk(t)] obtained by parallel transporting |ψj (t)〉 along the unique path
in H that is the pre-image under the projection map � of the shortest geodesic joining [ψj (t)]
and [ψk(t)] in P [20]. The function sj,k(t) is the distance separating [ψj (t)] and [ψk(t)] in P
at time t given by the generalized Fubini-Study metric defined by [21, 22]

s2
j,k(t) ≡ 4(1 − |〈ψj (t)|ψk(t)〉|2). (3)
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3. The weak energy stationary action principle

Let J = {1, 2, . . . , n}, n � 2, index a set S(t) = {|ψj (t)〉 : j ∈ J } of quantum states evolving
in H during a time interval [t0, t1] and define the weak energy action I to be the functional

I ≡
∫ t1

t0

∑
j<k∈J

L(sj,k(t); χ̇j,k(t), ṡj,k(t)) dt =
∑

j<k∈J

∫ t1

t0

L(sj,k(t); χ̇j,k(t), ṡj,k(t)) dt

where

L(sj,k(t); χ̇j,k(t), ṡj,k(t)) ≡ h̄χ̇j,k(t) + i h̄

{
sj,k(t)

4 − s2
j,k(t)

}
ṡj,k(t) = Wj,k(t). (4)

The purpose of this section is to show that the actual paths followed in H by the states in S(t)

between the end point configurations S(t0) and S(t1) at times t0 < t1 are such that the weak
energy action I is stationary for all variations in χj,k, sj,k and time which vanish at the end
points. We call this assertion the weak energy stationary action principle (WESAP).

In order to show this, consider the general transformations parametrized by the small
number ε and given by

χ ′
j,k(t) = χj,k(t) + εαj,k[t] (5)

s′
j,k(t) = sj,k(t) + εβj,k[t] (6)

and

t ′ = t + εγj,k[t] (7)

with

xj,k[t] ≡ xj,k(t; χ1,2, . . . , χn−1,n, s1,2, . . . , sn−1,n; χ̇1,2, . . . , χ̇n−1,n, ṡ1,2, . . . , ṡn−1,n)

x ∈ {α, β, γ }
(the time dependence of χi,l, si,l and their rates of change are suppressed for notational brevity).
Use equation (7) to write t in terms of t ′ to first order in ε as t = t ′ − εγj,k[t ′] and form the
quantity

I (ε) =
∑

j<k∈J

∫ t ′1

t ′0

L(s
	

j,k(t
′); χ̇

	

j,k(t
′), ṡ	

j,k(t
′)) dt ′ (8)

where

t ′i = ti + εγj,k[ti] i = 0, 1

χ
	

j,k(t
′) ≡ χ ′

j,k(t
′ − εγj,k[t ′])

(9)

and

s
	

j,k(t
′) ≡ s′

j,k(t
′ − εγj,k[t ′]) (10)

with χ̇
	

j,k(t
′) and ṡ

	

j,k(t
′) defined accordingly with respect to t ′.

Expanding equations (9) and (10) through first order in ε yields

χ
	

j,k(t
′) = χj,k(t

′) + εηj,k[t ′]

and

s
	

j,k(t
′) = sj,k(t

′) + εσj,k[t ′]
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where

ηj,k[t ′] = αj,k[t ′] − ∂χj,k

∂t ′
γj,k[t ′]

and

σj,k[t ′] = βj,k[t ′] − ∂sj,k

∂t ′
γj,k[t ′].

Substitution of these expanded expressions and their time derivatives into equation (8) gives

I (ε) =
∑

j<k∈J

∫ t ′1

t ′0

L(sj,k(t
′) + εσj,k[t ′]; χ̇j,k(t

′) + εη̇j,k[t ′], ṡj,k(t
′) + εσ̇j,k[t ′]) dt ′

which—upon expansion through first order in ε—becomes

I (ε) =
∑

j<k∈J

∫ t ′1

t ′0

{
L(sj,k(t

′); χ̇j,k(t
′), ṡj,k(t

′))

+ ε

[
σj,k[t ′]

∂L
∂sj,k

+ η̇j,k[t ′]
∂L

∂χ̇j,k

+ σ̇j,k[t ′]
∂L

∂ṡj,k

]}
dt ′. (11)

Now use the fact that
∫ t ′1
t ′0

dt ′ = ∫ t1
t0

dt ′ − ∫ t ′0
t0

dt ′ +
∫ t ′1
t1

dt ′ to rewrite the last equation to first
order in ε as

I (ε) =
∑

j<k∈J




∫ t1
t0
L(sj,k(t

′); χ̇j,k(t
′), ṡj,k(t

′)) dt ′

+ ε
∫ t1
t0

[
σj,k[t ′] ∂L

∂sj,k
+ η̇j,k[t ′] ∂L

∂χ̇j,k
+ σ̇j,k[t ′] ∂L

∂ṡj,k

]
dt ′

− ∫ t ′0
t0
L(sj,k(t

′); χ̇j,k(t
′), ṡj,k(t

′)) dt ′ +
∫ t ′1
t1
L(sj,k(t

′); χ̇j,k(t
′), ṡj,k(t

′)) dt ′


 .

(12)

Since the integration ranges for
∫ t ′i
ti

dt ′, i = 0, 1, are proportional to ε, then (i) the integrals
with these integration limits of the term in brackets in expression (11) do not appear in the last
equation because they are of order ε2; and (ii) the last two integrals in the last equation can be
written as

εγj,k[ti]L(sj,k(ti ); χ̇j,k(ti), ṡj,k(ti)) i = 0, 1.

Substituting this into equation (12) and integrating by parts the last two terms of the integrand
in brackets in this equation yield—upon rearrangement—the difference quotient

I (ε) − I (0)

ε

=
∑

j<k∈J




∫ t1
t0

{
σj,k[t ′]

[
∂L

∂sj,k
− d

dt ′

(
∂L

∂ṡj,k

)]
− ηj,k[t ′] d

dt ′

(
∂L

∂χ̇j,k

)}
dt ′

+
[
ηj,k[t ′]

(
∂L

∂χ̇j,k

)
+ σj,k[t ′]

(
∂L

∂ṡj,k

)
+ γj,k[t ′]L(sj,k(t

′); χ̇j,k(t
′), ṡj,k(t

′))
]t1

t0


 (13)

where

I (0) = I =
∑

j<k∈J

∫ t1

t0

L(sj,k(t
′); χ̇j,k(t

′), ṡj,k(t
′)) dt ′.

It is readily verified from equation (4) that

∂L
∂sj,k

− d

dt ′

(
∂L

∂ṡj,k

)
= 0 = d

dt ′

(
∂L

∂χ̇j,k

)
(14)
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so that the integrand on the right-hand side (rhs) of equation (13) vanishes and

I (ε) − I (0)

ε
=

∑
j<k∈J

[
ηj,k[t ′]

(
∂L

∂χ̇j,k

)
+ σj,k[t ′]

(
∂L

∂ṡj,k

)

+ γj,k[t ′]L(sj,k(t
′); χ̇j,k(t

′), ṡj,k(t
′))

]t1

t0

.

If it is required that all χj,k, sj,k and time variations vanish at the end points, then
ηj,k[ti] = σj,k[ti] = γj,k[ti] = 0 for i = 0, 1 and the value of the rhs of the last equation is
zero. Recognizing that this implies

dI

dε
= lim

ε→0

I (ε) − I (0)

ε
= 0

leads to the conclusion that I is stationary.

4. Symmetries and conservation laws

Let us agree to call the U(1) transformations |ψj 〉 → eiθj |ψj 〉, where θj is a constant phase
angle, ‘global transformations’ and observe that their application to equation (2) yields

eiχ ′
j,k = 〈ψj |ψk〉

|〈ψj |ψk〉| ei(θk−θj ) = ei[χj,k+(θk−θj )] ⇒ χ ′
j,k = χj,k + (θk − θj ).

In addition to χ ′
j,k(t) = χj,k(t) + (θk − θj ), it is also found that s′

j,k(t) = sj,k(t) when
global transformations are applied to equation (3) (i.e. U(1) is an isometry group for P when
distance is determined by the Fubini-Study metric). Then, since χ̇ ′

j,k(t) = χ̇j,k(t), it is readily
determined that

L(s ′
j,k(t); χ̇ ′

j,k(t), ṡ
′
j,k(t)) = L(sj,k(t); χ̇j,k(t), ṡj,k(t))

(as required by equation (1)) and∫ t1

t0

∑
j<k∈J

L(s ′
j,k(t); χ̇ ′

j,k(t), ṡ
′
j,k(t)) dt =

∫ t1

t0

∑
j<k∈J

L(sj,k(t); χ̇j,k(t), ṡj,k(t)) dt

so that both L and I are unchanged under global transformations (i.e. they are ‘globally
invariant’) and consequently exhibit a ‘global symmetry’. Thus, the action I remains stationary
under global transformations and the WESAP is valid even if each state in S(t) is multiplied
by a constant phase factor, i.e. when S(t) = {eiθj |ψj (t)〉 : j ∈ J }. It may be concluded
that this global symmetry leads to a somewhat more ‘generalized’ WESAP which is obtained
by amending it’s original statement to include the phrase ‘· · ·, even if each state in S(t) is
multiplied by a constant phase factor’.

A physical consequence of this symmetry is the global invariance of the time translation
equation for correlation amplitudes given by [18]

〈ψj (t1)|ψk(t1)〉 = e
i
h̄

∫ t1
t0

L(sj,k(t);χ̇j,k(t),ṡj,k(t)) dt〈ψj (t0)|ψk(t0)〉. (15)

This equation clearly remains unchanged under global transformations because of the
associated global invariance of L. In addition, the time translation equation for correlation
probability given by

|〈ψj (t1)|ψk(t1)〉|2 = e
−2

∫ t1
t0

{
sj,k (t )

4−s2
j,k

(t )

}
ṡj,k(t) dt |〈ψj (t0)|ψk(t0)〉|2 (16)

and which generalizes the temporal persistence of state normalization (because—from
equation (1)—when j = k, then sj,k(t) = 0) is also globally invariant because of the associated
global invariance of sj,k .
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Noether’s theorem [23] can be used to determine the conservation law associated with the
U(1) global symmetry discussed above. Although the law is tautological for this case, it has
an interesting conservation of ‘momentum’ interpretation. Observe that L and I are invariant
under infinitesimal translations of χj,k, i.e. when αj,k[t] = 1 and βj,k[t] = γj,k[t] = 0 in
transformations (5)–(7). It then follows from Noether’s theorem that∑

j<k∈J

(
∂L

∂χ̇j,k

)
= h̄

n(n − 1)

2
= constant, (17)

where use has been made of the fact that ∂L
∂χ̇j,k

= h̄.

Now note that since L is independent of χj,k

d

dt ′

(
∂L

∂χ̇j,k

)
= 0 ⇒ ∂L

∂χj,k

− d

dt ′

(
∂L

∂χ̇j,k

)
= 0

so that the conditions specified by equation (14) show that L satisfies the Euler–Lagrange
equations for each sj,k and χj,k. Consequently, if L is thought of as a Lagrangian function
with generalized ‘coordinates’ sj,k and χj,k , then the associated generalized conjugate ‘Fubini-
Study momentum’ psj,k

and the ‘Pancharatnam momentum’ pχj,k
are given by

psj,k
= ∂L

∂ṡj,k

= i h̄

(
sj,k

4 − s2
j,k

)
(18)

and

pχj,k
= ∂L

∂χ̇j,k

= h̄ (19)

respectively. It is clear from equation (19) that the momentum pχj,k
is a conserved quantity so

that equation (17) may be interpreted as the ‘law of conservation of Pancharatnam momentum’
given by ∑

j<k∈J

pχj,k
= h̄

n(n − 1)

2
.

Thus, the (total) Pancharatnam momentum is a constant of the motion for the evolving states
in set S(t). Note that from this perspective, this conservation law is a consequence of the fact
that each χj,k is an ‘ignorable coordinate’.

Since L does not depend upon t explicitly, L and I also exhibit a time translation
symmetry, i.e. they are invariant under the infinitesimal time transformations (5)–(7) when
αj,k[t] = βj,k[t] = 0 and γj,k[t] = 1. Straightforward application of Noether’s theorem yields
the conservation law∑
j<k∈J

{(
∂L

∂χ̇j,k

)
χ̇j,k(t) +

(
∂L

∂ṡj,k

)
ṡj,k(t) − L(sj,k(t); χ̇j,k(t), ṡj,k(t))

}
= constant. (20)

Since
(

∂L
∂χ̇j,k

) = h̄ and
(

∂L
∂ṡj,k

) = i h̄
( sj,k

4−s2
j,k

)
, then(

∂L
∂χ̇j,k

)
χ̇j,k(t) +

(
∂L

∂ṡj,k

)
ṡj,k(t) = L(sj,k(t); χ̇j,k(t), ṡj,k(t))

so that constant = 0.
This conservation law also has an interesting interpretation if L is again thought of as a

Lagrangian function. In particular, equations (18) and (19) may be used to write the left-hand
side of equation (20) as

E ≡
∑

j<k∈J

{[pχj,k
χ̇j,k + psj,k

ṡj,k] − L(sj,k; χ̇j,k, ṡj,k)}
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so that E may be interpreted as the ‘Jacobi integral’ of the motion and equation (20) is the
‘energy conservation law’

E = 0.

Thus, the vanishing ‘Jacobi integral’ is a constant of the motion for the evolving states in set
S(t).

5. Closing remarks

Like Hamilton’s principle, the WESAP is a compact holistic statement which describes the
motion of an ensemble of quantum mechanical states in terms of the stationary value of
its (weak) energy action integral. Whereas the Lagrangian function is the action integral’s
integrand for Hamilton’s principle, that for the WESAP is a weak energy functional defined
by Pancharatnam phases (i.e. phase differences within rays of states) and Fubini-Study metric
distances (i.e. distances between rays) that are associated with ensemble pairs. Consequently,
the Hilbert space evolution of an ensemble of n � 2 quantum states can now be understood
from an alternative geometric perspective as the motion of a ‘point’ along a ‘curve’ in an
n(n − 1)-dimensional configuration space with these phases and metric distances as the
generalized coordinates of the space. The WESAP requires that the configuration space curve
followed by this point is one for which the weak energy action integral is stationary (indeed,
the state solutions to the system’s Schrödinger equations define this curve). Because fewer
quantities are required when n < m + 1, this configuration space description of the evolution
of an ensemble of n states in m-dimensional Hilbert space can be more efficient than that
obtained using the temporal behaviour of the associated nm basis state probability amplitudes
(of course, the phases and metric distances which define the required evolutionary curve in
configuration space depend upon these amplitudes because they are defined in terms of inner
products of states).

An interesting feature of the weak energy functional L(sj,k(t); χ̇j,k(t), ṡj,k(t)) for a pair
of states is that it is a solution to the Euler–Lagrange equations for sj,k and χj,k . In direct
analogy with Hamilton’s principle, L may then be thought of as a Lagrangian function. This—
when combined with its intrinsic global U(1) and time translation symmetries—yields quasi
momentum and energy conservation laws that are associated with a set of n � 2 evolving
quantum states. The invariance under global U(1) transformations of time translations of both
correlation and probability amplitudes (equations (15) and (16)) are two important physical
consequences of this U(1) symmetry.

Also noteworthy is the observation that these momentum and energy conservation
laws provide—in a manner completely consistent with equations (15) and (16)—a formal
mechanism for establishing relationships between correlation amplitude and probability time
evolution profiles for pairs of states and evolutionary profiles for the weak energy. As an
example of this, consider the case where L is a constant of the motion. Then the energy
conservation law E = 0 implies that

dL
dt

= d

dt
[pχj,k

χ̇j,k + psj,k
ṡj,k] = 0.

This requires that:

1. pχj,k
χ̇j,k = real constant ⇒ χ̇j,k = aj,k = real constant because pχj,k

= h̄ (conservation
of Pancharatnam momentum) ⇒

χj,k(t) = aj,kt + bj,k (21)

where bj,k = real constant; and
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2. psj,k
ṡj,k = imaginary constant ⇒ ( sj,k

4−s2
j,k

)
ṡj,k = αj,k = real constant

⇒
∫ (

sj,k

4 − s2
j,k

)
dsj,k = αj,k

∫
dt ⇒ s2

j,k = 4(1 − e−2(αj,k t+βj,k))

where βj,k = real constant ⇒ from equation (3) that

|〈ψj (t)|ψk(t)〉|2 = e−2(αj,k t+βj,k). (22)

Thus, the correlation probability decays (grows) with time when αj,k t + βj,k > 0(<0).
Using equations (21) and (22) in equation (2) yields the associated correlation amplitude
profile given by

〈ψj (t)|ψk(t)〉 = e−(αj,k t+βj,k) + i (aj,kt+bj,k). (23)

Observe that (i) these results are in complete agreement with equations (15) and (16) for
L = h̄(aj,k + iαj,k); and (ii) equation (23) is a constraint upon the basis state probability
amplitudes and time evolution operators for |ψj 〉 and |ψk〉 which must be satisfied in order
for L to be a constant of the motion. A similar development using time dependent functions
instead of constants can obviously produce more complicated profiles. The application of
these notions to correlation control and weak energy dynamics is discussed in [18].
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